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G
raphene has attracted significant
attention since its first isolation as
a single sheet.1 The huge impact of

this achievement on nanoscience is in large
part due to its potential for graphene-based
nanoelectronics as a prospective alternative
to silicon electronics.2,3 Because graphene is
a zero-gap semiconductor at zero tempera-
ture, it needs to bemodified to be useful to a
number of applications in electronics de-
manding a clear electronic band gap.2While
chemical doping4 and the random5�7 or
highly ordered8�10 distribution of structural
defects allow for significant changes in gra-
phene's electronic structure, another com-
mon approach to manipulate graphene's
physical properties is the assembling of 1D
graphene substructures by confining the
honeycomb lattice in one direction.11�13

For example, controlling band gap in gra-
phene can be achieved via the confinement
of the electronic wave function in one-
dimension by creating carbon nanotubes
or,moredirectly, carbonnanoribbons (GNRs).
GNRs' band gap and magnetic structure
depend on the details of the width and edge
geometry, and can, in principle, be tuned for
a targeted functionality. While a general na-
noribbon presents a band gap closely related
to its width,12 the zigzag case (Z-GNRs) is
characterized by magnetic ordering along
the edges.13�16 The spins along a single
zigzag edge have a ferromagnetic alignment
with a magnitude decaying exponentially
when moving away from the edges.13 The
edge-to-edge relative alignment can be
either ferromagnetic (FM) or antiferromag-
netic (AFM) depending whether atoms of
opposite edgesbelong to the same sublattice
or not.17,18 While edge atoms from opposite
sides of a straight Z-GNR (such as those
studied in ref 13) are in different sublattices
(favoring an AFM arrangement), nonparallel
edges can belong to the same sublattice
(examples canbe seen in refs 17�19) leading

to a FM edge-to-edge alignment. In addition
Z-GNRs are predicted to behave as half-
metals.11

A number of theoretical investigations
have predictedmany intriguing physical pro-
perties for graphene-like systems.17,19�23 At
the same time, advances in the controlled
synthesis of pristine and narrow systems has
progressed at a sustained pace.2,24 Unfortu-
nately, many approaches devised to create
single GNR-based devices suffer of a scalabil-
ity problem since each individual system has
to be assembled one-at-a-time. In contrast,
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ABSTRACT

Graphitic nanowiggles (GNWs) are 1D systems with segmented graphitic nanoribbon GNR

edges of varying chiralities. They are characterized by the presence of a number of possible

different spin distributions along their edges and by electronic band-gaps that are highly

sensitive to the details of their geometry. These two properties promote these experimentally

observed carbon nanostructures as some of the most promising candidates for developing

high-performance nanodevices. Here, we highlight this potential with a detailed under-

standing of the electronic processes leading to their unique spin-state dependent electronic

quantum transport properties. The three classes of GNWs containing at least one zigzag edge

(necessary to the observation of multiple-magnetic states) are considered in two distinct

geometries: a perfectly periodic system and in a one-GNW-cell system sandwiched between

two semi-infinite terminals made up of straight GNRs. The present calculations establish a

number of elementary rules to relate fundamental electronic transport functionality,

electronic energy, the system geometry, and spin state.
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bottom-up approaches based on preprogrammed,
surface-assisted reactions are able to produce bulk
quantities of identical narrow, defect-free, and highly
ordered carbon nanostructures in an extremely selec-
tive process.24 The choice of different molecular pre-
cursors determines all the details of the resulting
carbon nanostructures. To-date, structures realized
with this method include three-rings-wide A-GNRs,
multiterminal junctions, and complex assembled rib-
bons with an alternated sequence of short straight
edges with either a parallel or oblique arrangement
relative to its periodic direction.24

It has been argued that this particular segmented
structure can be viewed as just an example of a more
general set of structures called graphene-nanowiggles
(GNWs).18 The name of this newly synthesized struc-
ture originates from the general, wiggle-like, config-
uration resulting from the periodic arrangements of
achiral GNRs at a regular angle. Because the individual
sectors are characterized by the relative geometries of
a pair of zigzag and/or armchair edges, GNWs can
come up in a series of well-defined shapes, namely
AA, AZ, ZA, or ZZ (see Figure 1). The electronic and
structural properties of these systems,18,25 as well as
the thermoelectric transport properties of a number of
them,26,27 have recently been studied using an array of
computational techniques. GNWs with at least one
zigzag sector are characterized by a broad diversity
of magnetic states compared to Z-GNRs. While ZA-
GNWs have a set of states analogous to Z-GNRs, AZ-
and ZZ-GNWs are found in up to four different spin-
polarized states. This property could be exploited for
the development of a series of nanodevices with spin-
dependent properties. Critical to their uses in actual
devices are their electronic transport properties. These
are likely to be noticeably different from GNRs, since
GNWs can be seen as a collection of regularly arranged
junctions between GNRs of different types. In addition,
the presence of spatial domainswith varying electronic
properties can lead to the appearance of quasi-loca-
lized states, which, depending on the system size, can
induce size-dependent tunneling across the system.
In this letter, we examine the spin-dependent elec-

tronic transport properties of the three classes of GNWs
with at least one zigzag edge in two particular config-
urations. First, we consider the case of a perfect perio-
dic GNW structure. Second, we evaluate the transport
characteristics of a single GNW cell sandwiched be-
tween two GNRs that serve as electrodes. We discuss
the results with emphasis on studying electronic con-
ductance as a function of the electronic energy. Such
an approach provides insight into the transport pro-
blem within a scattering framework where we com-
pute the quantum transmission probability for electrons
with a given energy to tunnel through a device.28 The
association of this transmission with the conductance is
the essence of the Landauer formalism employed

here.29,30 Furthermore, quantitative analysis of very
low-bias current can be obtained using approximate
in-equilibrium equations provided in the Methods
section.

RESULTS AND DISCUSSION

The interplay between armchair and zigzag edges
in graphitic systems has been shown to result in
transport properties which are directly influenced by
the spin distribution along the zigzag edges of the
structure.17,19,22 These properties include spin-filter19

and -valve17 mechanisms and large magneto-resistance
values.22 Here we show that such interplay, known to be
responsible for the diversity of GNWs' spin states, also
produces magnetic-state-dependent transport proper-
ties of particular importance, especially for potential
spintronic applications.
Even though the atomic structure of a given GNW

can be obtained from a reduced set of parameters,25

the geometry of the GNWs is significantly more com-
plex than that of a GNR. This results in a broader and
more diverse set of systems for GNWs in comparison
with GNRs. As demonstrated recently, the electronic
structure of GNWs has a nontrivial dependence on the
system's atomic structure.18,25 Here we choose three
particular systems to illustrate the transport properties
of this class of structures. This choice is guided by the
properties of specific magnetic states. While a semi-
conductor AFM spin distribution is the ground state for
a GNW containing zigzag edges, the other spin-polarized
distributions can behave either as a metal or a semi-
conductor system. The FM distribution is, in particular,
special in comparison with most of the other magnetic
states as it presents a nonspin degenerate set of energy
levels, leading to the possibility of controlling the
current flow across GNW-based devices by the choice
of the electronic spin. Given the specificity of the FM
state, we choose systems where the electronic energy
bands for the periodic case in this state present dif-
ferent behaviors around the Fermi energy: one metallic
(AZ-GNW) and two semiconductors with one having the
highest occupied bands corresponding to majority spin
(ZA-GNW) and theotherwith thesebands corresponding
to the minority spin (ZZ-GNW). In the following we
discuss the results for each case.

AZ-GNWs;Tuning the Gap. We will first consider the
case of periodic AZ-GNWs, focusing on the (11A,6Z)
structure. Details on the terminology employed to
classify GNWs have been presented previously.18,25

Within the TBU approach, this AZ-GNW presents four
possible magnetic states, namely antiferromagnetic
(AFM), ferromagnetic (FM), linear-antiferromagnetic
(LAFM), and trans-antiferromagnetic (TAFM) in addi-
tion to the nonmagnetic case (PM).18 The results of the
transport calculations are shown on the left of Figure 2.
Quantum conductance for spin-up levels is plotted as a
function of the energy around the Fermi energy (EF = 0)
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(the corresponding curves for spin-down are given by a
mirror reflection on the energy axis around the Fermi
energy). Unlike other states, and for obvious symmetry
reasons, the FM state presents asymmetric transport
behaviors for the two spin orientations since it has a
nonzero net magnetization. In all the other cases the
symmetry of the spin distribution imposes identical
transport properties for both spins. Notice the remark-
able differences in conductance profiles between dif-
ferent magnetic states. While FM is the only metallic
state, the LAFM case presents a very small gap (∼20
meV) around EF = 0 eV while the PM state has two
peaks of conductance at (20 meV around the Fermi
level. The AFM state presents the widest conductance
gap, followed by the TAFM configuration. As we have
different transport properties for each particular mag-
netic state, the selection of a specific electronic energy
and/or GNW's magnetic state can be used as a means
to switch the current between on or off conduction
states in GNW-based nanodevices. Focusing on ener-
gies around 0.4 eV, for example, the impinging electron
is transmitted when the GNW is in its AFM, FM (spin up
channel) or PM states, while it is blocked for the LAFM

and TAFM states. In the case of the FM state this
selectivity can additionally involve the electronic spin.
Based on energetics, switching mechanisms are ex-
pected to be practical in these systems since the PM
distribution is, in general, significantly less stable in
AZ-GNWs (as well as in ZA- and ZZ-GNWs), while the
energy of other spin polarized states are closer to each
other. Typical values for these energy barriers between
different magnetic states in GNWs can be estimated
by both DFT and TBU methods as illustrated in refs 18
and 25.

We now turn to the conductance properties of AZ-
GNWs by further examining the behavior of a single
unit cell attached to two semi-infinite A-GNR electro-
des. This structure along with a number of different
stable configurations for the electronic spin are de-
picted in Figure 3. Such distributions are similar to the
magnetic states observed in the periodic case. How-
ever, in this system, the GNW cell breaks the transla-
tional symmetry of the infinite 11-A-GNR (electrode)
due to the presence of the interfaces with the term-
inals. Furthermore, the interfaces induce significant
scattering, resulting in conductance curves that no

Figure 1. The four classes of achiral GNWs: AA, AZ, ZA, and ZZ, depending on when the parallel and oblique sectors,
respectively, present either an armchair (A) or zigzag (Z) edge.

Figure 2. Computed electronic conductance as a function of energy for the spin-up levels in the five possible spin
distributions for the (11A,6Z) AZ-GNW structure in the periodic (left) and one-cell connected to straight GNRs (right) cases.
The corresponding curves for the spin-down levels can be obtained from the spin-up data through a mirror reflection on the
Fermi energy (which is set to EF = 0).
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longer display a step-like profile (Figure 2). Because of
symmetry, the structure has a zero total magnetization
in the AFM, LAFM, and PM configurations. This argu-
ment is no longer valid for the FM and TAFM distribu-
tions and it follows that these states present spin-
dependent transport properties.

Let us now examine the possibility of tuning the
transport properties by selecting different magnetic
states. The periodic and the one-cell systems present
the fundamental difference that the latter requires
switching the magnetic state over a finite domain
(since the terminals are armchair and nonmagnetic)
while the former requires flipping spins over a much
larger spatial extension. This is an essential practical
aspect to be considered in designing GNW devices
based on spin-depending transport. We also note that,
unlike the periodic case, the one cell system always
presents a gap (greater than 0.2 eV). This is compatible
with the electrode properties since a perfect periodic
11-A-GNRelectrodehas a conductance gapof∼236meV
(obtained for a periodic GNR within the samemethod).
As this band gap is an intrinsic property of the A-GNR,
the conductance for the energies close to the Fermi
level is always absent in the one-cell system composed
of an AZ-GNW (unless the central AZ-GNW has a wide
parallel sector, attached to a correspondingly wide
A-GNR which presents a smaller and smaller gap as

the width becomes larger12). Nevertheless, the depen-
dence of the conductance gap on the magnetic state
(as can be seen on the right-hand-side of Figure 2) can
provide a systematic way to modify the electronic trans-
missionprobability by selecting specific spindistributions
in order to suit specific nanoelectronic applications.

ZA-GNWs;Selecting Spin Current. A similar procedure
as that employed above was used to study the (5Z,13A)
structure as a representative example of the ZA-GNW
class. This system, in its periodic configuration, pre-
sents a reduced set ofmagnetic states compared to the
AZ-GNWs.18 On the left-hand-side of Figure 4 we plot
the quantum conductance for the spin-up channels in
the AFM, FM, and PM states (the conductance for the
spin-down levels can be obtained from the spin-up
data through a mirror reflection around EF). As ex-
pected, AFM and PM display spin degenerated curves
for the conductance due to their symmetric spin dis-
tribution. The AFM state has a ∼265 meV gap around
the Fermi energy. Moving to the PM case, a highly
localized conductance peak appears at the zero energy
point which is surrounded by two conductance pla-
teaus separated by a very small gap (∼34meV). Finally,
the FM state presents a ∼30 meV gap. However, in
contrast with the AFM and PM cases, the gap in the FM
state lies between pure spin-up and spin-down levels.
It follows that the spin character of the current can be
controlled by setting the impinging electron energy
slightly above or below the Fermi energy.

The system made up of a ZA-GNW cell sandwiched
between two semi-infinite 5-Z-GNR terminal presents a
larger number of dissimilar spin distributions com-
pared with the periodic case. This diversity comes
about from the two possible spin distributions along
the Z-GNR terminals for each local spin distribution
from the central GNW unit cell. These different dis-
tributions are depicted in Figure 5. The labels AFM1,
AFM2, FM1, and FM2 correspond to the different
possible spin distributions between the top edge of
the electrodes and the bottom edge of the finite-size
GNW. The corresponding spin-up conductance curves

Figure 4. Quantum conductance as a function of energy for the spin-up levels in the three possible magnetic states for the
periodic (5Z,13A) ZA-GNW structure (left) and for the periodic 5-Z-GNR (right). The corresponding curves for spin-down levels
can be obtained from the spin-up results by a mirror reflection around the Fermi energy (EF = 0).

Figure 3. Schematic illustration of the four possible spin-
polarized distributions for a single (11A,6Z) AZ-GNW cell
attached to two semi-infinite 11-A-GNR electrodes. Here,
black (red) circles with a dot (cross) represent majority spin
up (down) for the atoms along the corresponding zigzag
edges.
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for these one-cell systems are plotted in Figure 6
(the corresponding spin-down curves are obtained
through a mirror reflection on the spin-up data around
EF). We observe that electronic transmission is sub-
stantially suppressed in the [�0.5 eV, þ0.5 eV] energy
range for the AFM1 case. After a gap of about 0.5 eV,
the conductance slowly increases. The same behavior
is observed for FM2, with the exception of the presence
of conductance spikes located close to (0.25 and
(0.35 eV. This behavior is directly related to the
terminal properties since these are in their AFM state
with a ∼0.5 eV conductance gap around the Fermi
energy (see the right of Figure 4).

According to definitions provided in Figure 5, the
AFM2 and FM1 states have Z-GNR terminals in their FM
state (which is metallic - see right of Figure 4). In the
FM1 case we note two broad conductance peaks
(centered close to�112 and�222meV) in the valence
band for spin up (majority spin) and two symmetrically
positioned peaks (112 and 222 meV) in the conduction
band for spin-down electrons. This is compatible with
the properties of both 5-Z-GNR terminals and the
(5Z,13A) system. Since the periodic 5-Z-GNR system
presents a constant, finite conductance in the energy
range to which these peaks belong, the periodic
ZA-GNW system presents 208 meV wide conductance
plateaus in the same energy intervals. We observe that,

around the Fermi energy, the occupied states conduc-
tance (E<0) corresponds to themajority spin, while the
electron�electron interaction pushes the opposite
spin levels to higher energies so that the conduc-
tance for the unoccupied levels (E > 0) is dominated
by the minority spin levels. As a result, one can
imagine being able to switch the spin character of
the current by selecting either the occupied or
unoccupied states.

This effect can be further understood by examining
the local current distribution. In Figure 7 we show the
local current plot for the spin-up states in the FM1
distribution considering that the terminals are filled
according to the chemical potentials μ1 = 0 and
μ2 = �0.1 eV (see eq 1 in the methods section). In this
plot we highlight the direction of the intersite local
currents Iij by drawing black arrows when this value is
at least 10% of the maximum value (Imax = 0.46 μA for
this particular structure). First, let us examine the
current profile for the spin-up levels. We observe that
the current is spread over the valley region of the
Z-GNR terminals and the central wiggle structure (i.e.,
where the graphene sublattices are interrupted) corre-
sponds to a narrow funnel where the current concen-
trates on the inner corner of the GNW cell. It follows
that chemical or physical modifications on these struc-
tures are expected to affect the transport properties
specially when operated on these particular sites,
making these structures potential candidates for
nanosensor applications with high spatial resolution.
On the other hand, the current is significantly re-
duced for the spin-down case (where Imax = 0.047 μA)
as expected from the conductance plots (Figure 6).
These features for spin-up and -down states are
interchanged when considering that the leads are
filled according to the chemical potentials μ1 = 0 and
μ2 = 0.1 eV (not shown).

Turning to the AFM2 state (which also has 5-Z-GNR
terminals in their FM state) highlights the possibility
of an alternate mechanism to select the spin polariza-
tion of the electronic current. In this case we still have

Figure 5. Four possible spin-polarized distributions for a
single (5Z,13A) AZ-GNW cell attached to two semi-infinite
5-Z-GNR electrodes. In the plots, black (red) circles with a
dot (cross) represent majority spin up (down) for the atoms
along the corresponding zigzag edges.

Figure 6. Quantum conductance as a function of energy for the five possible spin distributions of a single (5Z,13A) ZA-GNW
unit cell attached to two semi-infinite 5-Z-GNR terminals (spin-up curves). Spin-down curves are obtained by a mirror
reflection around the Fermi energy (set to EF = 0).
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two similar peaks for each spin channel, but their
positions relative to the Fermi level are inverted: the
conductance close to the Fermi level for occupied
states is now dominated by the spin down electrons
(minority spin on the Z-GNR terminals), while the
conductance for the unoccupied states is dominated
by spin up electrons (majority spin on the terminals).
This can seem surprising, in principle, as we could
expect the majority (minority) of spin electrons to be
responsible for the conductance from the occupied
(unoccupied) states. However, as shown below, an
analysis on the density of states (DOS) explains the
origin of this apparent paradox.

The DOS is shown in Figure 8. Clearly, a very large
portion of the DOS below (above) EF corresponds to
themajority (minority) spin in both FM1 and AFM2. The
states corresponding to the AFM2 and FM1 conduc-
tance peaks close to EF (in Figure 6) are marked by
arrows in the DOS plots from Figure 8. These particular

states behave differently from most of the states close
to EF and change their position relative to the Fermi
energy depending on whether the system is in its FM1
or AFM2 distribution. Therefore, the conductance for
states below and above the Fermi energy can be
switched between spin-up and -down conduction by
switching the spin polarization along the zigzag
edge sector indicated by the arrows in the left of
Figure 9. Finally, the PM distribution presents two
symmetric conductance peaks around the Fermi
level.

ZZ-GNWs;Turning the Current ON and OFF. We selected
the (5Z,8Z) system to study the ZZ-GNWclass. ZZ-GNWs
can assume a number of magnetic states: two anti-
ferromagnetic states (AFM and transverse-AFM, TAFM),
one ferromagnetic state (FM), a longitudinal ferrimag-
netic state (LFiM), and the trivial nonmagnetic state
(PM).18 In this system, no significant spin polarization is
developed along its short oblique edges so that the
AFM and TAFM distributions are indistinguishable,
similar to the FM and LFiM distributions. In the left of
Figure 10 we plot the conductance as a function of
energy (corresponding to spin-up states) for the peri-
odic (5Z,8Z) system in the AFM, FM, and PM states (spin-
down curves are obtained by a mirror operation
around EF). The AFM state presents a 338 meV con-
ductance gap around the Fermi energy, while the PM
case is metallic (nonzero conductance at EF). Both AFM
and PM states have degenerated spin-up and -down
conductance spectra as a consequence of the symme-
try of their spin distributions. Finally, the FM state
presents a small gap around EF = 0 separating states
with spin-up and -down. This is similar to what was
observed in the periodic (5Z,13A) structure in its FM
state, but with one noteworthy difference: the con-
ducting levels below (above) the Fermi energy corre-
spond to the minority (majority) spin. This behavior is
opposite to the (5Z,13A) case where the conductance
plateau just below EF for the FM state corresponds to
the majority spin.

Although the particular ZZ-GNW system selected
here does not present the five different possible
spin distributions within a single unit cell as most

Figure 7. Local current distribution I(x,y) for the one-cell
(5Z,13A) ZA-GNW and (5Z,8Z) ZZ-GNW systems in the FM1
distribution corresponding to spin-up states. The terminals
are filled according to the chemical potentials μ1 = 0 and
μ2 =�0.1 eV for the ZA structure and μ1/2 =(0.05 eV for the
ZZ case. The maximum intersite local current value for the
plot is Imax = 0.46 μA (Imax = 1.84 μA) for the ZA (ZZ) system.
Arrows are used to highlight the direction of the intersite
local currents Iij when this value reaches at least 10% of the
maximum value Imax.

Figure 8. Spin-up DOS as a function of energy for the AFM2 and FM1 spin distributions for a single (5Z,13A) ZA-GNW unit cell
attached to two semi-infinite 5-Z-GNR terminals calculated using the algorithm from ref 31. Spin-down curves can be
obtained from the spin-up data by mirror reflections along the energy axis around the Fermi energy (EF = 0).
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ZZ-GNWs,25 it is well-suited for comparison with the
ZA-GNW case presented in the previous section. The
one-cell system for this ZZ-GNW has five possibilities
for the spin distributionwhich are analogous to the five
corresponding distributions on the ZA-GNW one-cell
system (Figure 5). When analyzing the data of the one-
cell system (spin-up curves on the right of Figure 10;
spin-down curves are identical to spin-up curves after a
mirror reflection around EF), we observe that both AFM1
and FM2 states have a ∼555 meV conductance gap
around EF. In the AFM1 case we note two asymmetric
conductance peaks out of which the sharpest is
suppressed in the FM1 state, suggesting that switch-
ing between AFM1 and FM2 can be used to turn the

conductance ON and OFF for these particular values
of energy.

Focusing on the FM1 state, one observes a broad
conductance peak around the Fermi level which is
slightly asymmetric for spin-up and -down states.
When flipping the spin polarization on the zigzag edge
highlighted in Figure 9 we obtain the AFM2 state, and
the central broad peak is turnedOFFwhile we preserve
a number of conductance peaks on the left (right) of EF
for spin-up (-down) electrons. Another change is the
appearance of two peaks on the right (left) of EF for
spin-up (-down) levels. Further insight can be obtained
form the current distribution across the conductor. The
current due to the nonequilibrium conditions brought
about by chemical potentials μ1/2 =(0.05 eV is plotted
in Figure 7 for the spin-up levels in the FM1 state (with
similar behavior for the spin-down levels, not shown in
Figure 7). Similar to previous discussion of the current
profile, local currents Iij which are at least 10% of the
maximal local current (Imax = 1.84 μA) have their
directions highlighted by arrows between the corre-
sponding sites. Similarly to the spin-up levels in the
FM1 state from the ZA structure, the spin-up FM1
current in the ZZ system is distributed mostly over
the GNR valley, while it concentrates on the inner
corner of the GNW cell (where the local current reaches
its maximum value). Moving to the AFM2 case (not
shown), the current amplitude barely reaches 0.12 μA,
which is less than 10% of the maximum value from the
ON, FM1 state. We see that all the changes are gov-
erned by a local modification of the orientation for the
spin along the finite parallel edge from the central
GNW cell. The PM states behaves similarly to the

Figure 9. Switching mechanism for the spin-up and -down
conductance involving the AFM2 and FM1 states in a single
(5Z,13A) ZA-GNW unit cell attached to two semi-infinite 5-Z-
GNR terminals. Spin up (down) is represented by black (red)
circles with a dot (cross).

Figure 10. Quantum conductance (spin-up) as a function of energy for the three possible spin distributions in the periodic
(5Z,8Z) ZZ-GNW structure (left) and for the other five spin-configurations in the corresponding one-cell system. Spin-down
curves can be obtained from the spin-up case through a mirror reflection around the Fermi energy (EF = 0).
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ZA-GNW case, except for the presence of a sharp peak
on the Fermi level.

CONCLUSIONS

In this letter we used ballistic transport formalism to
demonstrate that the different magnetic states in
GNWs have a profound influence on the electronic
transmission. The conductance pattern in both peri-
odic and one-cell systems are found to be tunable by
selecting appropriate energy of the impinging electron
in a specific magnetic state. Such features clearly

indicate the possibility of using GNWs for the design
of new nanoscale devices with spin-dependent prop-
erties. We showed that manipulations of the transport
properties can be conducted through both localized
and extended modifications of the spin distribution
over the GNW systems. In light of the ever increasing
experimental control in creating these structures, the
realization of GNWs-based integrated nanocircuits
seems to be more and more likely to occur in a near
future, allowing for the development of novel nanos-
witch devices and other smart spintronic systems.

METHODS
Quantum conductance of extended GNW/GNR systems was

computed using a Green's function (GF) approach.32 For the GF
calculation we write the Hamiltonian in terms of a tight-binding
description which includes a Hubbardmodel Hamiltonian (TBU)
for which the occupancies for spin-up and -down states are
determined self-consistently.18,33 The TBU calculations are re-
stricted to the π-orbitals for the graphitic structures. Despite its
simplicity, this approach is known to yield accurate results,
when compared to density functional theory, provided interac-
tions up to third nearest neighbors are included.34 We follow
the parametrization from ref 34 so that we used γ1 = 3.2 eV,
γ2 = 0 eV, and γ3 = 0.3 eV for the first-, second-, and third-nearest
neighbor hopping integrals, respectively, including aΔγ1 = 0.2 eV
correction to the γ1 parameter for the edge atoms to account
for the different coordination number at the borders of the
system. Note that the edge atoms are saturated with hydrogens
(as implicitly considered within this π-orbital model). The
U = 0.92γ1 parameter for the electronic on-site repulsion
included in the Hubbard Hamiltonian is parametrized using
ab initio calculations.18 A detailed description of this model
Hamiltonian can be found in a recent publication.25

In the computational packages we developed to perform
these calculations, the conductor's Green's function is obtained
using an efficient recursive algorithm recently proposed in the
literature where the Dyson equation is repeatedly applied until
no explicit matrix inversion is necessary.31

We can attain further qualitative insight into the profile of the
charge flowby plotting the local current. The current Iij between
any two sites, i and j, can be calculated with the aid of the lesser
GF (G<) with31,35

Iij ¼ e

h

Z ¥

�¥
dE(tijG

<
ji (E) � tjiG

<
ij (E)) (1)

where tij = tji
* is the hopping between sites i and j. In the absence

of electronic correlations, G< can be directly obtained from the
retarded GF (GR) by

G<(E) ¼ GRΣ
<G†

R; Σ< ¼ ∑
l

fl(Σ
†
l � Σl) (2)

where the sum runs over all the terminals, Σl is the lth terminal
self-energy, and fl is the corresponding Fermi distribution used
to fill the terminal states according to the chemical potential μl.
To ease the visualization of the local current data, we

represent the local current in a real space representation:

I(x, y) ¼ ∑
i 6¼j

RijÆrjiæÆijIj jæÆ jjræ (3)

where Æi|I|jæ= Iij and Ær|iæ= e�r2/aCC
2 with r being the distance from

the point (x,y) to the position of site i. As Iij = �Iji (see eq 1), we
select only the positive values of Iijby settingRij=1 (0)when Iijg
0 (Iij < 0).
Note that these equations are only formally correct for full

nonequilibrium, self-consistent calculations. However, they re-
main applicable at very low-bias potential, especially for a
qualitative study as that provided in Figure 7.

The self-consistent occupancies related to the Hubbard
Hamiltonian were obtained using periodic boundary condi-
tions. For the one cell systems, we included a large number of
GNR unit cells on each side of the GNW cell in order to allow the
extreme electrode cells to recover the properties of the bulk. For
the ZA and ZZ cases we used 35 Z-GNR unit cells (corresponding
to a length of 86.1 Å) on each side of the GNW cell (70 Z-GNR
cells in total). In the other AZ case we used 20 A-GNR unit cells
(i.e., a 85.2Å length) oneach sideof the centralGNWcell (40 cells in
total). These large buffer sections made the calculations more
challenging but were found to lead to a well-converged solu-
tion amenable to be recast in a setup relevant to a transport
calculation where the GNR electrodes are modeled as semi-
infinite.
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